

CND 221 ADVANCED FULL CUSTOM VLSI DESIGN 2023

Course Description

The main objective of this course is to introduce the students to modern advanced full custom VLSI digital integrated circuits. The student will be introduced to the implementation strategies in digital IC design, dealing with timing issues. In addition, the interconnect modeling and spice wire model will be demystified. The students get hands-on experience in using modern industrial CAD tools.

Contact Hours

Credit Hours	Lecture Hours	Lab Hours	Student work	Total
6	24 (1.25x2)/week	21 (3x1)/week	48	93

Prerequisites

Introduction to Silicon Process and VLSI

Learning Outcomes

- After successful completion of this course, the student will be able to:
- 1. Practice, Design, and understand advanced CMOS digital integrated circuits through a handson design process including:
 - Practicing and understanding VLSI design flows starting from circuit design, pre-layout simulation, layout creation, Design rule check (DRC), layout vs schematic (LVS), parasitic extraction, full annotation, testing and verification, and post layout simulation.
 - Understanding the different design flows such as non-programmable (e.g., ASIC) and programmable design flows.
 - Practice and understand the differences among full-custom, semi-custom, cell-based, and array-based design flows.
- 2. Practice, understand, and design module level building blocks including arithmetic building blocks and memory structures.
- 3. Practice, Analyze, understand, and tackle system level challenges including timing issues, interconnect parasitic effects, testing and verification, power distribution, I/Os, and clock distributions.

Course Materials

Textbook:

• Rabaey, Jan, Anantha Chandrakasan, and Bora Nikolic. Digital Integrated Circuits: A Design Perspective. 2nd ed. Prentice Hall.

References:

- Weste, Neil, Harris, David. CMOS VLSI Design: A Circuits and Systems Perspective 4th Ed. Pearson.
- Johnson, Howard, Graham, Martin. High Speed Digital Design: A Handbook of Black Magic. Pearson.
- Material is also derived from the IEEE Journals, Transactions, and flagship Conference proceedings.

Tools Use in Lab:

 Siemens EDA flow: Tanner EDA (S-Edit (Schematic Editor), L-Edit (Layout Editor), W-Edit (Waveform Editor) and Calibre.

Course Project: By the end of this course the students are required to deliver a complete project (chosen from variety of proposals) assigned by the industry experts and university professors instructors.

Week	Lecture	Readings Lab
	Revision on Combinational a	nd Sequential Logic
1	 Revision on Combinational and Sequential Logic. C²MOS: A clock skew insensitive approach. Alternative Register Styles Pulse Registers Sense-Amplifier Based Registers 	Rabaey: Ch7.LAB01: Implementing Pulse Registers7.3.2, 7.4 Ch7: 7.5, 7.6For the second se
	 Pipelining: An approach to optimize sequential circuits Latch- vs. Register-Based Pipelines NORA-CMOS—A Logic Style for Pipelined Structures Non-Bistable Sequential Circuits The Schmitt Trigger Monostable Sequential Circuits 	

Course Topics and Schedule

	• Astable Circuits			
	VLSI Design Flows (Learning Outcome 1)			
2	 Overview and Introduction to advanced full custom VLSI design Flow: Introduction to VLSI Design Flow (ASIC flow, Behavioral and structural design, (From Specification to layout and Chip Design). From Custom to Semi-custom and Structured Array Design Approaches. Custom Circuit Design Example: "Differential input output CMOS (DINO-CMOS)". 	Rabaey: 8.1, 8.2	LAB02: Pipelined Data Path with C2MOS Latches (NORA-CMOS).	
3	 Advanced full custom VLSI design Flow Cell-Based Design Methodology Standard Cell Compiled Cells Macrocells, Megacells and Intellectual Property Semi-Custom Design Flow Array-Based Implementation Approaches Pre-diffused (or Mask- Programmable) Arrays. Pre-wired Arrays 	Rabaey: Ch 8: 8.3-8.5	LAB03: Programmable Logic Array (PLA) Design and Implementation.	
	Module Level (Learning Outcome 2)			
4	 Arithmetic Operations (I) (Arithmetic blocks) Datapaths in Digital Processor Architectures The Adder The Adder The Binary Adder: Definitions The Full Adder: Circuit Design Considerations The Binary Adder: Logic Design Considerations 	Rabaey: Ch 11: 11.1- 11.4	LAB04: Full Custom Design - ''DINO-CMOS'' Logic Family	

5	 The Multiplier The Multiplier: Definitions Partial-Product Generation Partial Product Accumulation Final Addition Arithmetic Operations (II) The Shifter Barrel Shifter Logarithmic Shifter Other Arithmetic Operators Power and Speed Trade-off's in Datapath Structures Design Time Power-Reduction Techniques Run-Time Power In Standby (or Sleep) Mode 	Rabaey: Ch 11: 11.5-11.7	LAB05: Arithmetic Operations
6	 Designing memory and array structures (I) Introduction Memory Classification Memory Architectures and Building Blocks The Memory Core Read-Only Memories Nonvolatile Read-Write Memories 	Rabaey: Ch 12: 12.1- 12.3	LAB05: Arithmetic Operations

7	Designing memory and array structures (II) • The Memory Core • Read-Write Memories (RAM) • Contents-Addressable • Or Associative Memory (CAM) • Memory Peripheral Circuitry • The Address Decoders • Sense Amplifiers • Voltage References • Drivers/Buffers • Timing and Control		LAB06: Advanced Memory Design - Implementing a Compact and Efficient 6T SRAM Cell	
	System Level (Learning Outcome 3)			
8	 Coping with interconnect (I) Interconnect Parameters — Capacitance, Resistance, and Inductance. Capacitive Parasitics Capacitive Parasitics Capacitance and Reliability— Cross Talk Capacitance and Performance in CMOS Resistive Parasitics Resistive Parasitics Resistance and Reliability— Ohmic Voltage Drop Electromigration Resistance and Performance—RC Delay 	Rabaey: Ch 4: 4.3 Ch 9: 9.1-9.3	LAB06: Advanced Memory Design - Implementing a Compact and Efficient 6T SRAM Cell	

9	 Coping with interconnect (II) inductive parasitic Inductance and Reliability—	Rabaey:	LAB07: Crosstalk and
	Voltage Drop Inductance and Performance—	Ch 9: 9.4,	Parasitic Study on Digital
	Transmission Line Effects Advanced Interconnect Techniques Reduced-Swing Circuits Current-Mode Transmission Techniques.	9.5	Schematics
10	 Timing issues in digital circuits (I) Timing Classification of Digital Systems Synchronous Interconnect Mesochronous interconnect Plesiochronous Interconnect Asynchronous Interconnect Synchronous Design — An In-depth Perspective Synchronous Timing Basics Sources of Skew and Jitter Clock-Distribution Techniques Latch-Based Clocking. Repeater insertion. 	Rabaey: Ch 10: 10.1-10.3	LAB8: Clock Generators using DLL

11	 Timing issues in digital circuits (II) Self-Timed Circuit Design Self-Timed Logic - An Asynchronous Technique Completion-Signal Generation Self-Timed Signaling Practical Examples of Self-Timed Logic I/Os 	Rabaey: Ch 10: 10.4, 10.6	LAB8: Clock Generators using DLL
	• I/Os		